An algorithm for the analysis of temporally structured multidimensional measurements

2Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

Analysis of multichannel recordings acquired with contemporary imaging or electrophysiological methods in neuroscience is often diffi cult due to the high dimensionality of the data and the low signal-to-noise ratio. We developed a method that addresses both problems by utilizing prior information about the temporal structure of the signal and the noise. This information is expressed mathematically in terms of sets of correlation matrices, a versatile approach that allows the treatment of a large class of signal and noise sources, including non-stationary sources or correlated signal and noise sources. We present a mathematical analysis of the algorithm, as well as application to an artifi cial dataset, and show that the algorithm is tolerant to inaccurate assumptions about the temporal structure of the data. We suggest that the algorithm, which we name temporally structured component analysis, can be highly benefi cial to various multichannel measurement techniques, such as fMRI or optical imaging. © 2010 Blumenfeld.

Author supplied keywords

Cite

CITATION STYLE

APA

Blumenfeld, B. (2010). An algorithm for the analysis of temporally structured multidimensional measurements. Frontiers in Computational Neuroscience, 3(JAN). https://doi.org/10.3389/neuro.10.028.2009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free