In this work, AuPd alloy palygorskite based Pal-NH2@AuPd nano-catalysts were prepared and used as catalysts for the reduction of nitroarenes and dyes at room temperature. The surface of palygorskite (Pal) was first modified with 3-aminpropyltriethoxysilane, and then covered with AuPd alloy nanoparticles through co-reduction of HAuCl4 and K2PdCl4. The morphology and structures of the Pal-NH2@AuPd nano-catalysts were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The as-synthesized Pal-NH2@AuPd nano-catalysts displayed excellent catalytic performance in reducing 4-nitrophenol (4-NP) and various other nitroaromatic compounds. Moreover, the catalytic activities of the Pal-NH2@AuPd nano-catalysts were adjustable via changing the atomic ratio of AuPd alloy nanoparticles, leading to the Pal-NH2@Au48Pd52 component as having the best atomic ratio. The Pal-NH2@Au48Pd52 continued to display good catalytic stability after being reused for several cycles and there were no obvious changes, either of the morphology or the particle size distribution of the nano-catalysts. Furthermore, these Pal-NH2@Au48Pd52 nano-catalysts also provided a convenient and accessible way for the degradation of dyes in artificial industrial wastewater.
CITATION STYLE
Xu, J., Guo, S., Jia, L., & Zhang, W. (2018). Palygorskite supported AuPd alloy nanoparticles as efficient nano-catalysts for the reduction of nitroarenes and dyes at room temperature. Nanomaterials, 8(12). https://doi.org/10.3390/nano8121000
Mendeley helps you to discover research relevant for your work.