Linking soil microbial community dynamics to straw-carbon distribution in soil organic carbon

58Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Returning crop residues is a possible practice for balancing soil carbon (C) loss. The turnover rate of organic C from crop residues to soil C is dependent on soil microbial community dynamics. However, the relationship between any temporal changes in the soil microbial community after crop straw inputs and the dynamics of straw-C distribution in the soil organic carbon (SOC) pool remains unclear. The present study investigated the allocation of straw-C into soil dissolved organic carbon (DOC), microbial biomass carbon (MBC), particulate organic carbon (POC) and mineral-associated organic carbon (MaOC) using stable isotope probing, as well as the temporal changes in the soil bacterial and fungal communities using high-throughput sequencing. After the first 180 days of straw decomposition, approximately 3.93% and 19.82% of straw-C was transformed into soil MaOC and POC, respectively, while 0.02% and 2.25% of straw-C was transformed into soil DOC and MBC, respectively. The temporal change of the soil microbial community was positively correlated with the dynamics of straw-C distribution to SOC (R > 0.5, P < 0.05). The copiotrophic bacteria (e.g., Streptomyces, Massilia and Sphingobacterium), cellulolytic bacteria and fungi (e.g., Dyella and Fusarium, Talaromyces), acidophilic bacteria (e.g., Edaphobacter and unclassified Acidobacteriaceae), denitrifying and N-fixing microbes (e.g., Burkholderia-Paraburkholderia, Paraphaeosphaeria and Bradyrhizobium), and fungi unclassified Sordariomycetes were significantly correlated with straw-C distribution to specific SOC fractions (P < 0.05), which explained more than 90% of the variation of straw-C allocation into soils. Copiotrophic, certain cellulolytic and denitrifying microbes had positively correlated with DOC- and MaOC-derived from straw, and other cellulolytic fungi (e.g., Talaromyces) and specific bacteria (e.g. Bradyrhizobium) were positively correlated with POC-derived from straw. Our results highlight that the temporal change of soil microbial community structure well reflects the conversion and distribution process of straw-C to SOC fractions.

Cite

CITATION STYLE

APA

Su, Y., He, Z., Yang, Y., Jia, S., Yu, M., Chen, X., & Shen, A. (2020). Linking soil microbial community dynamics to straw-carbon distribution in soil organic carbon. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62198-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free