Pada industri jasa pelayanan peti kemas, Terminal Nilam merupakan pelanggan dari PT. BIMA, yang secara khusus bergerak dibidang jasa perbaikan dan perawatan alat berat. Terminal ini menjadi sentral tempat untuk melakukan aktifitas bongkar muat peti kemas domestik yang memiliki empat buah container crane untuk melayani dua kapal. Proses perawatan alat berat seperti container crane yang selama ini beroperasi, agaknya kurang memperhatikan data pengelompokkan atau klasifikasi jenis perawatan yang dibutuhkan oleh alat berat tersebut. Di kemudian hari, alat berat dapat menunjukkan kinerja yang tidak maksimal bahkan dapat berujung pada kecelakaan kerja. Selain itu, kelalaian perawatan container crane juga dapat menyebabkan pembengkakan biaya perawatan lanjut. Target produksi bongkar muat dapat berkurang dan juga keterlambatan jadwal kapal sandar sangat mungkin terjadi. Metode pembelajaran menggunakan mesin atau biasa disebut dengan Machine Learning (ML), dengan mudah dapat melenyapkan kemungkinan-kemungkinan tersebut. ML dalam penelitian ini, kami rancang agar bekerja dengan mengidentifikasi lalu mengelompokkan jenis perawatan container crane yang sesuai, yaitu ringan atau berat. Metode ML yang pilih untuk digunakan dalam penelitian ini yaitu Random Forest, Support Vector Machine, k-Nearest Neighbor, Naïve Bayes, Logistic Regression, J48, dan Decision Tree. Penelitian ini menunjukkan keberhasilan ML model tree dalam melakukan pembelajaran jenis data perawatan container crane (numerik dan kategoris), dengan J48 menunjukkan performa terbaik dengan nilai akurasi dan nilai ROC-AUC mencapai 99,1%. Pertimbangan klasifikasi kami lakukan dengan mengacu kepada tanggal terakhir perawatan, hour meter, breakdown, shutdown, dan sparepart.
CITATION STYLE
Nugroho, V. A., Adi, D. P., Wibowo, A. T., Sulistyono, M. T., & Gumelar, A. B. (2021). Klasifikasi Jenis Pemeliharaan dan Perawatan Container Crane menggunakan Algoritma Machine Learning. MATICS, 13(1), 21–27. https://doi.org/10.18860/mat.v13i1.11525
Mendeley helps you to discover research relevant for your work.