Temporal and spatial variability in sea-ice carbon:nitrogen ratios on canadian arctic shelvestemporal and spatial variability in sea-ice carbon: Nitrogen ratios

Citations of this article
Mendeley users who have this article in their library.


To enhance the accuracy of carbon cycling models as applied to sea ice in the changing Arctic, we analyzed a large data set of particulate organic carbon (POC) and nitrogen (PON) measurements in first-year bottom sea ice (n = 257) from two Arctic shelves, the Canadian Arctic Archipelago and Beaufort Sea shelf, including dark winter and spring seasonal measurements Using the Redfield ratio for POC:PON conversion would provide reasonable estimates only over a limited range of sea-ice biomass concentrations observed in this study. Therefore, our results argue in favour of using variable POC:PON stoichiometry in sea-ice biogeochemical models, supported by the wide range of biomass concentrations in first-year sea ice and the evidence of variability in sea-ice POC:PON ratios at the regional (CAA), shelf (CAA versus BSS), and seasonal (dark winter versus spring) scales. Incorporating this variability into analytical and predictive modelling efforts is essential to achieve a better understanding of the role of first-year sea ice in regional food webs and global biogeochemical cycles. The use of the power function model presented here is recommended, as it reflects that POC:PON ratios do not remain constant over the observed sea-ice POC and PON concentrations. For sea-ice biogeochemical modellers, recommendations include: 1) parameterization using variable POC:PON ratios rather than consistent Redfield or average values, 2) the inclusion of distinct power functions to parameterize dark winter versus spring POC:PON ratios and, 3) Arctic-wide or regionally-based models based on areals Wide ranges of sea-ice POC:PON ratios were observed during both the dark winter (12-46 mol:mol) and spring (3-24 mol:mol) periods. Sea-ice POC:PON ratios and chlorophyll a concentrations were significantly higher in the Archipelago versus the Beaufort Sea shelf (p < 0.01), yet there was a highly significant relationship between sea-ice POC and PON during spring for both shelves (r2 = 0.94). POC:PON ratios were not consistent over the range of measured POC and PON concentrations, justifying the use of a power function model to best describe the relationship between POC and PON. Distinct relationships between POC:PON ratios and chlorophyll-based biomass were observed for the dark winter and the spring: dark winter sea-ice POC:PON ratios decreased with increasing sea-ice biomass whereas spring POC:PON ratios increased with increasing sea-ice biomass. The transition from the dark period to the spring growth period in first-year sea ice represented a distinct stoichiometric shift in POC:PON ratios. Our results demonstrate that the Redfield ratio has limited applicability over the four-order of magnitude range of biomass concentrations observed in first-year sea ice on Arctic shelves. This study emphasizes the need for variable POC:PON stoichiometry in sea-ice biogeochemical models and budget estimates, in particular at high biomass concentrations and when considering seasonality outside of the spring period in first year ice. The use of a power function model for POC:PON relationships in sea ice is also recommended to better constrain carbon estimates in biogeochemical sea-ice models.




Niemi, A., & Michel, C. (2015). Temporal and spatial variability in sea-ice carbon:nitrogen ratios on canadian arctic shelvestemporal and spatial variability in sea-ice carbon: Nitrogen ratios. Elementa, 3. https://doi.org/10.12952/journal.elementa.000078

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free