Background. We undertook a cost-benefit analysis of screening for Wilms tumor and hepatoblastoma in children with Beckwith-Wiedemann syndrome (BWS), a known cancer predisposition syndrome. The purpose of this analysis was twofold: first, to assess whether screening in children with BWS has the potential to be cost-effective; second, if screening appears to be cost-effective, to determine which parameters would be most important to assess if a screening trial were initiated. Procedures. We used data from the BWS registry at the National Cancer Institute, the National Wilms Tumor Study (NWTS), and large published series to model events for two hypothetical cohorts of 1,000 infants born with BWS. One hypothetical cohort was screened for cancer until a predetermined age, representing the base case. The other cohort was unscreened. For our base case, we assumed: (a) sonography examinations three times yearly (triannually) from birth until 7 years of age; (b) screening would result in one stage shift downward at diagnosis for Wilms tumor and hepatoblastoma; (c) 100% sensitivity and 95% specificity for detecting clinical stage I Wilms tumor and hepatoblastoma; (d) a 3% discount rate; (e) a false positive result cost of $402. We estimated mortality rates based on published Wilms tumor and hepatoblastoma stage specific survival. Results. Using the base case, screening a child with BWS from birth until 4 years of age results in a cost per life year saved of $9,642 while continuing until 7 years of age results in a cost per life-year saved of $14,740. When variables such as cost of screening examination, discount rate, and effectiveness of screening were varied based on high and low estimates, the incremental cost per life-year saved for screening up until age four remained comparable to acceptable population based cancer screening ranges (
CITATION STYLE
Elizabeth McNeil, D., Brown, M., Ching, A., & Debaun, M. R. (2001). Screening for Wilms tumor and hepatoblastoma in children with Beckwith-Wiedemann syndromes: A cost-effective model. Medical and Pediatric Oncology, 37(4), 349–356. https://doi.org/10.1002/mpo.1209
Mendeley helps you to discover research relevant for your work.