A polycarboxylate as a superplasticizer for montmorillonite clay in cement: Adsorption and tolerance studies

6Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

A novel polycarboxylate superplasticizer (PCE) with a long polyoxyethylene (PEO) chain and a terminal carboxylic group was synthesized from a modified polyether (SAE-IPEG) to increase its performance in cement. The molecular structure of the PCE was characterized by infrared spectroscopy and 1H nuclear magnetic resonance (NMR) spectroscopy. The performance of synthesized PCE in cement was studied in the absence and the presence of montmorillonite (Mmt) clay. It was found that the PCE disperses in cement uniformly without aggregation, which is different significantly from the conventional PCEs. Adsorption measurements and X-ray diffraction analysis revealed that the synthesized PCE only interacted with Mmt via surface adsorption, whereas the conventional PCEs interact with the clay through the surface adsorption and the chemical intercalation. Such dramatic change could be ascribed to the introduction of an electronegative carboxylic acid group as a terminal group into the long polyoxyethylene chain of PCE, which reduced the adsorption and enhanced tolerance of PCE on Mmt.

Cite

CITATION STYLE

APA

Chen, G., Lei, J., Du, Y., Du, X., & Chen, X. (2018). A polycarboxylate as a superplasticizer for montmorillonite clay in cement: Adsorption and tolerance studies. Arabian Journal of Chemistry, 11(6), 747–755. https://doi.org/10.1016/j.arabjc.2017.12.027

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free