Isolation of cells for selective treatment and analysis using a magnetic microfluidic chip

25Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study describes the development and testing of a magnetic microfluidic chip (MMC) for trapping and isolating cells tagged with superparamagnetic beads (SPBs) in a microfluidic environment for selective treatment and analysis. The trapping and isolation are done in two separate steps; first, the trapping of the tagged cells in a main channel is achieved by soft ferromagnetic disks and second, the transportation of the cells into side chambers for isolation is executed by tapered conductive paths made of Gold (Au). Numerical simulations were performed to analyze the magnetic flux and force distributions of the disks and conducting paths, for trapping and transporting SPBs. The MMC was fabricated using standard microfabrication processes. Experiments were performed with E. coli (K12 strand) tagged with 2.8 μm SPBs. The results showed that E. coli can be separated from a sample solution by trapping them at the disk sites, and then isolated into chambers by transporting them along the tapered conducting paths. Once the E. coli was trapped inside the side chambers, two selective treatments were performed. In one chamber, a solution with minimal nutrition content was added and, in another chamber, a solution with essential nutrition was added. The results showed that the growth of bacteria cultured in the second chamber containing nutrient was significantly higher, demonstrating that the E. coli was not affected by the magnetically driven transportation and the feasibility of performing different treatments on selectively isolated cells on a single microfluidic platform.

Cite

CITATION STYLE

APA

Yassine, O., Gooneratne, C. P., Smara, D. A., Li, F., Mohammed, H., Merzaban, J., & Kosel, J. (2014). Isolation of cells for selective treatment and analysis using a magnetic microfluidic chip. Biomicrofluidics, 8(3). https://doi.org/10.1063/1.4883855

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free