The Separation and Hα Contrasts of Massive Accreting Planets in the Gaps of Transitional Disks: Predicted Hα Protoplanet Yields for Adaptive Optics Surveys

  • Close L
15Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

We present a massive accreting gap planet model that ensures large gaps in transitional disks are kept dust free by the scattering action of three coplanar quasi-circular planets in a 1:2:4 mean motion resonance (MMR). This model uses the constraint of the observed gap size, and the dust-free nature of the gap, to determine within ∼10% the possible orbits for three massive planets in an MMR. Calculated orbits are consistent with the observed orbits and H α emission (the brightest line to observe these planets) for LkCa 15 b, PDS 70 b, and PDS 70 c within observational errors. Moreover, the model suggests that the scarcity of detected H α planets is likely a selection effect of the current limitations of non-coronagraphic, low (<10%) Strehl, H α imaging with adaptive optics (AO) systems used in past H α surveys. We predict that as higher Strehl AO systems (with high-performance custom coronagraphs; like the 6.5 m Magellan Telescope MagAO-X system) are utilized at H α , the number of detected gap planets will substantially increase by more than tenfold. For example, we show that >25 ± 5 new H α “gap planets” are potentially discoverable by a survey of the best 19 transitional disks with MagAO-X. Detections of these accreting protoplanets will significantly improve our understanding of planet formation, planet growth and accretion, solar system architectures, and planet–disk interactions.

Cite

CITATION STYLE

APA

Close, L. M. (2020). The Separation and Hα Contrasts of Massive Accreting Planets in the Gaps of Transitional Disks: Predicted Hα Protoplanet Yields for Adaptive Optics Surveys. The Astronomical Journal, 160(5), 221. https://doi.org/10.3847/1538-3881/abb375

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free