Performance analysis of an electrically assisted propulsion system for a short-range civil aircraft

25Citations
Citations of this article
92Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

With civil aviation growing at around 4.7% per annum, the environmental footprint of aviation is increasing. Moreover, the use of kerosene as a fuel accelerates the depletion of non-renewable fossil fuels and increases global warming. Hence, the aviation industry has to come up with new technologies to reduce its environmental impact and make aviation more sustainable. An electrically assisted propulsion system can combine the benefits of an electrical power source with a conventional turbofan engine. However, the additional electrical system increases the weight of the aircraft and complexity of the power management system. The objective of this research is to analyze the effect of an assistive electrical system on the performance of a turbofan engine for an A320 class aircraft on a short-range mission. The developed simulation model consists of an aircraft performance model combined with a propulsion model. The power management strategy is integrated within the simulation model. With the proposed propulsion system and power management strategy, the electrically assisted propulsion system would be able to reduce fuel burn, total energy consumption, and emissions for short-range missions of around 1000 km.

Cite

CITATION STYLE

APA

Ang, A. W. X., Gangoli Rao, A., Kanakis, T., & Lammen, W. (2019). Performance analysis of an electrically assisted propulsion system for a short-range civil aircraft. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(4), 1490–1502. https://doi.org/10.1177/0954410017754146

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free