This study aimed to investigate the efficacy of a rice straw biosorbent in batch adsorption for the removal of chromium (Cr(VI)) and lead (Pb(II)) heavy-metal ions from wastewater. The biosorbent was chemically synthesized and activated by using concentrated sulfuric acid. The produced biosorbent was then characterized by using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses, which provided insights into surface morphology and functional groups. The study examined the effects of pH, rice straw dose, ion concentration, and contact time on metal ion adsorption. Optimal conditions for efficient removal (95.57% for Cr(VI) and 85.68% for Pb(II)) were achieved at a pH of 2.0, a biosorbent dose of 2 g/L, an initial concentration of 20 mg/L, and a contact time of 50 min in synthetic solutions. The isotherms and kinetics model fitting results found that both metal ion adsorption processes were multilayer on the hetero surface of rice straw biosorbent via rate diffusion kinetics. Thermodynamic investigations were conducted, and the results strongly indicate that the adsorption process is endothermic and spontaneous. Notably, the results indicated that the highest desorption rate was achieved by adding 0.3 N HCl to the system.
CITATION STYLE
Venkatraman, Y., Arunkumar, P., Kumar, N. S., Osman, A. I., Muthiah, M., Al-Fatesh, A. S., & Koduru, J. R. (2023). Exploring Modified Rice Straw Biochar as a Sustainable Solution for Simultaneous Cr(VI) and Pb(II) Removal from Wastewater: Characterization, Mechanism Insights, and Application Feasibility. ACS Omega, 8(41), 38130–38147. https://doi.org/10.1021/acsomega.3c04271
Mendeley helps you to discover research relevant for your work.