Background: Periodically regenerated hair follicles provide an excellent research model for studying tissue regeneration and stem cell homeostasis. Periodic activation and differentiation of hair follicle stem cells (HFSCs) fuel cyclical bouts of hair regeneration. HFSCs represent an excellent paradigm for studying tissue regeneration and somatic stem cell homeostasis. However, these crucial studies are hampered by the lack of a culture system able to stably expand human HFSCs and regulate their fate. Results: Here, we use layer-by-layer (LbL) self-assembly with gelatin/alginate to construct a nanoscale biomimetic extracellular matrix (ECM) for an HFSC population. The LbL coating provides ECM and mechanical support for individual cells, which helps to maintain the CD200+α6+ HFSC population to a certain extent. Addition of key signal molecules (FGF-7 and VEGF-A) simulates the minimum essential components of the stem cell microenvironment, thereby effectively and stably expanding HFSCs and maintaining the CD200+α6+ HFSC population. Subsequently, BMP2 loaded to the nanocoated layer, as a slow-release signal molecule, activates BMP signaling to regulate HFSCs’ fate in order to obtain a purified CD200+α6+ HFSC population. Conclusion: This system can minimize the microenvironment of HFSCs; thus, stably amplifying HFSCs and revealing their plasticity. Our study thus provides a new tool for studies of hair follicle reconstruction and stem cell homeostasis. [Figure not available: see fulltext.]
CITATION STYLE
Chen, P., Zhang, F., Fan, Z., Shen, T., Liu, B., Chen, R., … Hu, Z. (2021). Nanoscale microenvironment engineering for expanding human hair follicle stem cell and revealing their plasticity. Journal of Nanobiotechnology, 19(1). https://doi.org/10.1186/s12951-021-00840-5
Mendeley helps you to discover research relevant for your work.