A simplified method to isolate rice mitochondria

3Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Mitochondria play critical roles in plant growth, development and stress tolerance. Numerous researchers have carried out studies on the plant mitochondrial genome structure, mitochondrial metabolism and nuclear-cytoplasmic interactions. However, classical plant mitochondria extraction methods are time-consuming and consist of a complicated ultracentrifugation procedure with expensive reagents. To develop a more rapid and convenient method for the isolation of plant mitochondria, in this study, we established a simplified method to isolate rice mitochondria efficiently for subsequent studies. Results: To isolate rice mitochondria, the cell wall was first disrupted by enzymolysis to obtain the protoplast, which is similar to animal mitochondria. Rice mitochondria were then isolated with a modified method based on the animal mitochondria isolation protocol. The extracted mitochondria were next assessed according to DNA and protein levels to rule out contamination by the nucleus and chloroplasts. Furthermore, we examined the physiological status and characteristics of the isolated mitochondria, including the integrity of mitochondria, the mitochondrial membrane potential, and the activity of inner membrane complexes. Our results demonstrated that the extracted mitochondria remained intact for use in subsequent studies. Conclusion: The combination of plant protoplast isolation and animal mitochondria extraction methods facilitates the extraction of plant mitochondria without ultracentrifugation. Consequently, this improved method is cheap and time-saving with good operability and can be broadly applied in studies on plant mitochondria.

Author supplied keywords

Cite

CITATION STYLE

APA

Xu, Y., Li, X., Huang, J., Peng, L., Luo, D., Zhang, Q., … Hu, J. (2020). A simplified method to isolate rice mitochondria. Plant Methods, 16(1). https://doi.org/10.1186/s13007-020-00690-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free