Superhydrophobic surfaces enabled by femtosecond fiber laser-written nanostructures

10Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Inspired by the self-cleaning and water-repellent lotus leaf, we have developed an efficient process to create superhydrophobic metal surfaces using a femtosecond fiber laser and have investigated the mechanisms of the structured metal surfaces in relation to their hydrophobicity. The at will feature of femtosecond fiber lasers can write versatile patterns of hydrophobicity with nanoscale precision on any metal. The results show that the homogeneously distributed hierarchical structures exhibit multifunctional properties, including superhydrophobicity, self-cleaning, and light-trapping. By optimizing the fabrication conditions, we have achieved a contact angle as high as 171° and a rolling angle of less than 3°. The structure is also resistant to an extreme temperature range of-40 °C to 71 °C and temperature shocks from 20 °C to-40 °C. This research highlights the exciting potential applications of superhydrophobic metals in the aviation, biomedical, and solar energy industries and beyond.

Cite

CITATION STYLE

APA

Liu, E., Lee, H. J., & Lu, X. (2020). Superhydrophobic surfaces enabled by femtosecond fiber laser-written nanostructures. Applied Sciences (Switzerland), 10(8). https://doi.org/10.3390/APP10082678

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free