Do Additional Features Help or Hurt Category Learning? The Curse of Dimensionality in Human Learners

3Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

The curse of dimensionality, which has been widely studied in statistics and machine learning, occurs when additional features cause the size of the feature space to grow so quickly that learning classification rules becomes increasingly difficult. How do people overcome the curse of dimensionality when acquiring real-world categories that have many different features? Here we investigate the possibility that the structure of categories can help. We show that when categories follow a family resemblance structure, people are unaffected by the presence of additional features in learning. However, when categories are based on a single feature, they fall prey to the curse, and having additional irrelevant features hurts performance. We compare and contrast these results to three different computational models to show that a model with limited computational capacity best captures human performance across almost all of the conditions in both experiments.

Cite

CITATION STYLE

APA

Vong, W. K., Hendrickson, A. T., Navarro, D. J., & Perfors, A. (2019). Do Additional Features Help or Hurt Category Learning? The Curse of Dimensionality in Human Learners. Cognitive Science, 43(3). https://doi.org/10.1111/cogs.12724

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free