Lanosterol synthase in dicotyledonous plants

108Citations
Citations of this article
83Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sterols are important as structural components of plasma membranes and precursors of steroidal hormones in both animals and plants. Plant sterols show a wide structural variety and significant structural differences from those of animals. To elucidate the origin of structural diversity in plant sterols, their biosynthesis has been extensively studied [Benveniste (2004) Annu. Rev. Plant. Biol. 55: 429, Schaller (2004) Plant Physiol. Biochem. 42: 465]. The differences in the biosynthesis of sterols between plants and animals begin at the step of cyclization of 2,3-oxidosqualene, which is cyclized to lanosterol in animals and to cycloartenol in plants. However, here we show that plants also have the ability to synthesize lanosterol directly from 2,3-oxidosqualene, which may lead to a new pathway to plant sterols. The Arabidopsis gene At3g45130, designated LAS1, encodes a functional lanosterol synthase in plants. A phylogenetic tree showed that LAS1 belongs to the previously uncharacterized branch of oxidosqualene cyclases, which differs from the cycloartenol synthase branch. Panax PNZ on the same branch was also shown to be a lanosterol synthase in a yeast heterologous expression system. The higher diversity of plant sterols may require two biosynthetic routes in steroidal backbone formation. JSPP © 2006.

Cite

CITATION STYLE

APA

Suzuki, M., Xiang, T., Ohyama, K., Seki, H., Saito, K., Muranaka, T., … Ebizuka, Y. (2006). Lanosterol synthase in dicotyledonous plants. Plant and Cell Physiology, 47(5), 565–571. https://doi.org/10.1093/pcp/pcj031

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free