LEDGF/p75 is required for an efficient dna damage response

15Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

Abstract

Lens epithelium-derived growth factor splice variant of 75 kDa (LEDGF/p75) plays an important role in cancer, but its DNA-damage repair (DDR)-related implications are still not com-pletely understood. Different LEDGF model cell lines were generated: a complete knock-out of LEDGF (KO) and re-expression of LEDGF/p75 or LEDGF/p52 using CRISPR/Cas9 technology. Their proliferation and migration capacity as well as their chemosensitivity were determined, which was followed by investigation of the DDR signaling pathways by Western blot and immunofluores-cence. LEDGF-deficient cells exhibited a decreased proliferation and migration as well as an increased sensitivity toward etoposide. Moreover, LEDGF-depleted cells showed a significant reduction in the recruitment of downstream DDR-related proteins such as replication protein A 32 kDa subunit (RPA32) after exposure to etoposide. The re-expression of LEDGF/p75 rescued all knockout effects. Surprisingly, untreated LEDGF KO cells showed an increased amount of DNA fragmen-tation combined with an increased formation of γH2AX and BRCA1. In contrast, the protein levels of ubiquitin-conjugating enzyme UBC13 and nuclear proteasome activator PA28γ were substan-tially reduced upon LEDGF KO. This study provides for the first time an insight that LEDGF is not only involved in the recruitment of CtIP but has also an effect on the ubiquitin-dependent regulation of DDR signaling molecules and highlights the role of LEDGF/p75 in homology-directed DNA re-pair.

Cite

CITATION STYLE

APA

Liedtke, V., Schröder, C., Roggenbuck, D., Weiss, R., Stohwasser, R., Schierack, P., … Schenk, L. (2021). LEDGF/p75 is required for an efficient dna damage response. International Journal of Molecular Sciences, 22(11). https://doi.org/10.3390/ijms22115866

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free