Inositol pyrophosphate synthesis by diphosphoinositol pentakisphosphate kinase-1 is regulated by phosphatidylinositol(4,5)bisphosphate

10Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

The 5-diphosphoinositol pentakisphosphate (5-InsP7) and bisdiphosphoinositol tetrakisphosphate (InsP8) are "energetic" inositol pyrophosphate signaling molecules that regulate bioenergetic homeostasis. Inositol pyrophosphate levels are regulated by diphosphoinositol pentakisphosphate kinases (PPIP5Ks); these are large modular proteins that host a kinase domain (which phosphorylates 5-InsP7 to InsP8), a phosphatase domain that catalyzes the reverse reaction, and a polyphosphoinositide-binding domain (PBD). Here, we describe new interactions between these three domains in the context of full-length human PPIP5K1.We determine that InsP7 kinase activity is dominant when PPIP5K1 is expressed in intact cells; in contrast, we found that InsP8 phosphatase activity prevails when the enzyme is isolated from its cellular environment. We approach a reconciliation of this disparity by showing that cellular InsP8 phosphatase activity is inhibited by C8-PtdIns(4,5)P2 (IC50 40 μM). We recapitulate this phosphatase inhibition with natural PtdIns(4,5)P2 that was incorporated into large unilamellar vesicles. Additionally, PtdIns(4,5)P2 increases net InsP7 kinase activity 5-fold. We demonstrate that PtdIns(4,5)P2 is not itself a phosphatase substrate; its inhibition of InsP8 phosphatase activity results from an unusual, functional overlap between the phosphatase domain and the PBD. Finally, we discuss the significance of PtdIns(4,5)P2 as a novel regulator of PPIP5K1, in relation to compartmentalization of InsP7/InsP8 signaling in vivo.

Cite

CITATION STYLE

APA

Nair, V. S., Gu, C., Janoshazi, A. K., Jessen, H. J., Wang, H., & Shears, S. B. (2018). Inositol pyrophosphate synthesis by diphosphoinositol pentakisphosphate kinase-1 is regulated by phosphatidylinositol(4,5)bisphosphate. Bioscience Reports, 38(2). https://doi.org/10.1042/BSR20171549

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free