Design and synthesis of chiral Zn2+ complexes mimicking natural aldolases for catalytic C-C bond forming reactions in aqueous solution

8Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Extending carbon frameworks via a series of C-C bond forming reactions is essential for the synthesis of natural products, pharmaceutically active compounds, active agrochemical ingredients, and a variety of functional materials. The application of stereoselective C-C bond forming reactions to the one-pot synthesis of biorelevant compounds is now emerging as a challenging and powerful strategy for improving the efficiency of a chemical reaction, in which some of the reactants are subjected to successive chemical reactions in just one reactor. However, organic reactions are generally conducted in organic solvents, as many organic molecules, reagents, and intermediates are not stable or soluble in water. In contrast, enzymatic reactions in living systems proceed in aqueous solvents, as most of enzymes generally function only within a narrow range of temperature and pH and are not so stable in less polar organic environments, which makes it difficult to conduct chemoenzymatic reactions in organic solvents. In this review, we describe the design and synthesis of chiral metal complexes with Zn2+ ions as a catalytic factor that mimic aldolases in stereoselective C-C bond forming reactions, especially for enantioselective aldol reactions. Their application to chemoenzymatic reactions in aqueous solution is also presented. © 2014 by the authors; licensee MDPI, Basel, Switzerland.

Cite

CITATION STYLE

APA

Itoh, S., Sonoike, S., Kitamura, M., & Aoki, S. (2014, January 28). Design and synthesis of chiral Zn2+ complexes mimicking natural aldolases for catalytic C-C bond forming reactions in aqueous solution. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms15022087

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free