Morphology and surface properties of high strength siloxane poly(urethane-urea)s developed for heart valve application

33Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A series of siloxane poly(urethane-urea) (SiPUU) were developed by incorporating a macrodiol linked with a diisocyanate to enhance mixing of hard and soft segments (SS). The effect of this modification on morphology, surface properties, surface elemental composition, and creep resistance was investigated. The linked macrodiol was prepared by reacting α,ω-bis(6-hydroxyethoxypropyl) poly(dimethylsiloxane)(PDMS) or poly(hexamethylene oxide) (PHMO) with either 4,4′-methylenediphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), or isophorone diisocyanate (IPDI). SiPUU with PHMO-MDI-PHMO and PHMO-IPDI-PHMO linked macrodiols showed enhanced creep resistance and recovery when compared with a commercial biostable polyurethane, Elast-Eon™ 2A. Small and wide-angle X-ray scattering data were consistent with significant increase of hydrogen bonding between hard and SS with linked-macrodiols, which improved SiPUU's tensile stress and tear strengths. These SiPUU were hydrophobic with contact angle higher than 101° and they had low water uptake (0.7%·w/w of dry mass). They also had much higher siloxane concentration on the surface compared to that in the bulk. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 112–121, 2019.

Cite

CITATION STYLE

APA

Dandeniyage, L. S., Adhikari, R., Bown, M., Shanks, R., Adhikari, B., Easton, C. D., … Gunatillake, P. A. (2019). Morphology and surface properties of high strength siloxane poly(urethane-urea)s developed for heart valve application. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 107(1), 112–121. https://doi.org/10.1002/jbm.b.34101

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free