In the interleukin 3-dependent hematopoietic cell line Ba/F3, inhibition of mitogen-activated protein kinase, a member of the MAPK/c-Jun N-terminal kinase/stress-activated protein kinase kinase family that plays an important role in cell growth and death control, rapidly leads to severe apoptosis. However, most of the antiapoptotic substrates of MAPK remain to be identified. Here we report that, upon interleukin-3 stimulation of Ba/F3 cells, the transcription factor GATA-1 is strongly phosphorylated at residue serine 26 by a MAPK-dependent pathway. Phosphorylation of GATA-1 increases GATA-1-mediated transcription of the E4bp4 survival gene without significantly changing the DNA-binding affinity of GATA-1. Further characterization of GATA-1 phosphorylation site mutants revealed that the antiapoptotic function of GATA-1 is strongly dependent upon its phosphorylation at the Ser-26 position and is probably mediated through its up-regulation of Bcl-XL expression. Taken together, our data demonstrate that MAPK-dependent GATA-1 phosphorylation is important for its transactivation of the E4bp4 gene, Bcl-XL expression and cell survival. Therefore, GATA-1 may represent a novel MAPK substrate that plays an essential role in a cytokine-mediated antiapoptotic response. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Yu, Y. L., Chiang, Y. J., Chen, Y. C., Papetti, M., Juo, C. G., Skoultchi, A. I., & Yen, J. J. Y. (2005). MAPK-mediated phosphorylation of GATA-1 promotes Bcl-XL expression and cell survival. Journal of Biological Chemistry, 280(33), 29533–29542. https://doi.org/10.1074/jbc.M506514200
Mendeley helps you to discover research relevant for your work.