Effects of short-term hyper- and hypo-osmotic exposure on the osmoregulatory strategy of unfed North Pacific spiny dogfish (Squalus suckleyi)

9Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

The North Pacific spiny dogfish (Squalus suckleyi) is a partially euryhaline species of elasmobranch that often enter estuaries where they experience relatively large fluctuations in environmental salinity that can affect plasma osmolality. Previous studies have investigated the effects of altered salinity on elasmobranchs over the long term, but fewer studies have conducted time courses to investigate how rapidly they can adapt to such changes. In this study, we exposed unfed (no exogenous source of nitrogen or TMAO) spiny dogfish to hyper- and hypo-osmotic conditions and measured plasma and tissue osmolytes, nitrogen excretion, and changes in enzyme activity and mRNA levels in the rectal gland over 24h. It was shown that plasma osmolality changes to approximately match the ambient seawater within 18-24h. In the hypersaline environment, significant increases in urea, sodium, and chloride were observed, whereas in the hyposaline environment, only significant decreases in TMAO and sodium were observed. Both urea and ammonia excretion increased at low salinities suggesting a reduction in urea retention and possibly urea production. qPCR and enzyme activity data for Na+/K+-ATPase did not support the idea of rectal gland activation following exposure to increased salinities. Therefore, we suggest that the rectal gland may not be a quantitatively important aspect of the dogfish osmoregulatory strategy during changes in environmental salinity, or it may be active only in the very early stages (i.e., less than 6h) of responses to altered salinity.

Cite

CITATION STYLE

APA

Deck, C. A., Bockus, A. B., Seibel, B. A., & Walsh, P. J. (2016). Effects of short-term hyper- and hypo-osmotic exposure on the osmoregulatory strategy of unfed North Pacific spiny dogfish (Squalus suckleyi). Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology, 193, 29–35. https://doi.org/10.1016/j.cbpa.2015.12.004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free