Although well described in the 1960s, liver toxicity secondary to radiation therapy, commonly known as radiation-induced liver disease (RILD), remains a major challenge. RILD encompasses two distinct clinical entities, a 'classic' form, composed of anicteric hepatomegaly, ascites and elevated alkaline phosphatase; and a 'non-classic' form, with liver transaminases elevated to more than five times the reference value, or worsening of liver metabolic function represented as an increase of 2 or more points in the Child-Pugh score classification. The risk of occurrence of RILD has historically limited the applicability of radiation for the treatment of liver malignancies. With the development of 3D conformal radiation therapy, which allowed for partial organ irradiation based on computed tomography treatment planning, there has been a resurgence of interest in the use of liver irradiation. Since then, a large body of evidence regarding the liver tolerance to conventionally fractionated radiation has been produced, but severe liver toxicities has continued to be reported. More recently, improvements in diagnostic imaging, radiation treatment planning technology and delivery systems have prompted the development of stereotactic body radiotherapy (SBRT), by which high doses of radiation can be delivered with high target accuracy and a steep dose gradient at the tumor - normal tissue interface, offering an opportunity of decreasing toxicity rates while improving tumor control. Here, we present an overview of the role SBRT has played in the management of liver tumors, addressing the challenges and opportunities to reduce the incidence of RILD, such as adaptive approaches and machine-learning-based predictive models.
CITATION STYLE
Toesca, D. A. S., Ibragimov, B., Koong, A. J., Xing, L., Koong, A. C., & Chang, D. T. (2018). Strategies for prediction and mitigation of radiation-induced liver toxicity. In Journal of Radiation Research (Vol. 59, pp. i40–i49). Oxford University Press. https://doi.org/10.1093/jrr/rrx104
Mendeley helps you to discover research relevant for your work.