A procedure for the prediction of talc content in wheat flour based on radial basis function (RBF) neural network and near-infrared spectroscopy (NIRS) data is described. In this study, 41 wheat flour samples adulterated with different concentrations of talc were used. The diffuse reflectance spectra of all samples were collected by NIRS analyzer in the spectral range of 400 to 2,500 nm. A sample of outliers was eliminated by Mahalanobis distance based on near-infrared spectral scanning, and the remaining 40 wheat flour samples were used for spectral characteristic analysis. A calibration set of 26 samples and a prediction set of 14 samples of wheat flour were built as a result of sample set partitioning based on joint x–y distances division. A comparison of Savitzky-Golay smoothing, multiplicative scatter correction (MSC), first derivation, second derivation, and standard normal variation in the modeling showed that MSC has the best preprocessing effect. To develop a simpler, more efficient prediction model, the correlation coefficient method (CCM) was used to reduce spectral redundancy and determine the maximum correlation informative wavelength (MIW). From the full 1,050 wavelengths, 59 individual MIWs were finally selected. The optimal combined detection model was CCM-MSC-RBF based on the selected MIWs, with a determination of prediction coefficients of prediction (Rp) of 0.9999, root-mean-square error of prediction of 0.0765, and residual predictive deviation of 65.0909. The study serves as a proof of concept that NIRS technology combined with multivariate analysis has the potential to provide a fast, nondestructive and reliable assay for the prediction of talc content in wheat flour.
CITATION STYLE
Liu, Y., Sun, L., Ran, Z., Pan, X., Zhou, S., & Liu, S. (2019). Prediction of talc content in wheat flour based on a near-infrared spectroscopy technique. Journal of Food Protection, 82(10), 1655–1662. https://doi.org/10.4315/0362-028X.JFP-18-582
Mendeley helps you to discover research relevant for your work.