Calculations of height-integrated conductivity from 31 individual Dynamics Explorer (DE 2) substorm crossings presented by Gjerloev and Hoffman [this issue] are used to compile empirical models of the height-integrated Pedersen and Hall conductivities (conductances) in a bulge-type auroral substorm. Global auroral images obtained by Dynamics Explorer 1 (DE 1) were used to select substorms displaying a typical bulge-type emission pattern and each individual DE 2 pass was positioned with respect to key features in the observed emission pattern. The conductances were calculated for each DE 2 pass using electron precipitation data and a monoenergetic conductance model. All passes were divided into six different sectors, and average conductance profiles were carefully deduced for each of these sectors. Using a simple boxcar filter, smoothed average sector passes were calculated and from linear interpolation between these, two-dimensional conductance models were compiled. The characteristics of our models are (1) the Hall conductance maximizes in the high-latitude part of the surge at 48 mho with a Hall to Pedersen ratio of 2.4; (2) two channels of enhanced conductance are overlapping in local time near midnight and are fairly separated in latitude; (3) the conductance has a sharp gradient at the high-latitude boundary in the premidnight sector while in the postmidnight sector a broad region of low conductance stretches up to 10° invariant latitude poleward of the local peak; and finally, (4) the enhanced conductance region displays a characteristic broadening toward dawn primarily owing to a poleward shift of the high-latitude boundary. Copyright 2000 by the American Geophysical Union.
CITATION STYLE
Gjerloev, J. W., & Hoffman, R. A. (2000). Height-integrated conductivity in auroral substorms: 2. Modeling. Journal of Geophysical Research: Space Physics, 105(A1), 227–235. https://doi.org/10.1029/1999ja900353
Mendeley helps you to discover research relevant for your work.