High breakdown mixture discriminant analysis

Citations of this article
Mendeley users who have this article in their library.


Robust S-estimation is proposed for multivariate Gaussian mixture models generalizing the work of Hastie and Tibshirani (J. Roy. Statist. Soc. Ser. B 58 (1996) 155). In the case of Gaussian Mixture models, the unknown location and scale parameters are estimated by the EM algorithm. In the presence of outliers, the maximum likelihood estimators of the unknown parameters are affected, resulting in the misclassification of the observations. The robust S-estimators of the unknown parameters replace the non-robust estimators from M-step of the EM algorithm. The results were compared with the standard mixture discriminant analysis approach using the probability of misclassification criterion. This comparison showed a slight reduction in the average probability of misclassification using robust S-estimators as compared to the standard maximum likelihood estimators. © 2003 Elsevier Inc. All rights reserved.




Bashir, S., & Carter, E. M. (2005). High breakdown mixture discriminant analysis. Journal of Multivariate Analysis, 93(1), 102–111. https://doi.org/10.1016/j.jmva.2003.12.003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free