We describe a new focal ischemia model consisting of unilateral middle cerebral artery occlusion with a silicone rubber cylinder attached to a nylon surgical thread inserted through the internal carotid artery in rats. Recirculation was accomplished by pulling the thread out of the artery. We evaluated the reliability of this model and studied the influence of reperfusion of the brain by measuring regional cerebral blood flow in 30 rats and by using conventional neuropathologic methods after different periods of occlusion in 48 rats. The anterior neocortex and the lateral part of the caudate putamen, which were supplied by the occluded middle cerebral artery, were the regions most frequently damaged. After 1 hour of occlusion in five rats, in the cortex supplied by the occluded artery mean +/- SD blood flow was 0.19 +/- 0.08 ml/g/min (approximately 15% of that in the corresponding region of five sham-operated control rats), and mild scattered ischemic cell change was observed. Three (n = 5) or six (n = 5) hours of occlusion reduced blood flow more severely and caused severe ischemic cell changes in the cortex supplied by the occluded artery in proportion to the duration of ischemia. Characteristically, in five rats subjected to 3 hours of occlusion followed by 3 hours of recirculation, blood flow was restored and spongy edematous change was observed in the cortex supplied by the recirculated artery. This change resulted in hypoperfusion of the neighboring cortical region surrounding the recirculated area. Our model should be useful in various investigations of the influence of reperfusion on focal ischemic brain injury.
CITATION STYLE
Nagasawa, H., & Kogure, K. (1989). Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke, 20(8), 1037–1043. https://doi.org/10.1161/01.str.20.8.1037
Mendeley helps you to discover research relevant for your work.