MicroRNA-27a (miR-27a) upregulation has been identified in diabetes, but the pathogenesis of miR-27a in renal tubulointerstitial fibrosis (TIF) in diabetic nephropathy (DN) has not been elucidated. Herein, we found that high glucose stimulated miR-27a expression, which directly inhibited PPARγ and promoted fibrosis in NRK-52E cells. The functional relevance of miR-27a-dependent PPARγ decrease was proven by inhibition or overexpression of miR-27a both in vitro and in streptozotocininduced diabetic rats. MiR-27a, via repression of PPARγ, activates the TGF-β/Smad3 signaling and contributes to the expressional changes of connective tissue growth factor (CTGF), Fibronectin and Collagen I, key mediators of fibrosis. Furthermore, we provide evidences that plasma miR-27a upregulation contributed to unfavorable renal function and increased TIF in renal tissues of diabetic rats and DN patients. Notably, miR-27a exhibited clinical and biological relevance as it was linked to elevated serum creatinine, proteinuria, urinary N-acetyl-β-D-glucosaminidase (NAG), and reduced estimated glomerular filtration rate (eGFR). Thus, we propose a novel role of the miR- 27a-PPARγ axis in fostering the progression toward more deteriorated renal TIF in DN. Monitoring plasma miR-27a level and its association with PPARγ can be used to reflect the severity of renal TIF. Targeting miR-27a could be evaluated as a potential therapeutic approach for DN.
CITATION STYLE
Hou, X., Tian, J., Geng, J., Li, X., Tang, X., Zhang, J., & Bai, X. (2016). MicroRNA-27a promotes renal tubulointerstitial fibrosis via suppressing PPARγ pathway in diabetic nephropathy. Oncotarget, 7(30), 47760–47776. https://doi.org/10.18632/oncotarget.10283
Mendeley helps you to discover research relevant for your work.