Biobreeding (BB) rats model type 1 autoimmune diabetes (T1D). BB diabetes-prone (BBDP) rats develop T1D spontaneously. BB diabetes-resistant (BBDR) rats develop T1D after immunological perturbations that include regulatory T cell (Treg) depletion plus administration of low doses of a TLR ligand, polyinosinic-polycytidylic acid. Using both models, we analyzed CD4+CD25+ and CD4+CD45RC− candidate rat Treg populations. In BBDR and control Wistar Furth rats, CD25+ T cells comprised 5–8% of CD4+ T cells. In vitro, rat CD4+CD25+ T cells were hyporesponsive and suppressed T cell proliferation in the absence of TGF-β and IL-10, suggesting that they are natural Tregs. In contrast, CD4+CD45RC− T cells proliferated in vitro in response to mitogen and were not suppressive. Adoptive transfer of purified CD4+CD25+ BBDR T cells to prediabetic BBDP rats prevented diabetes in 80% of recipients. Surprisingly, CD4+CD45RC−CD25− T cells were equally protective. Quantitative studies in an adoptive cotransfer model confirmed the protective capability of both cell populations, but the latter was less potent on a per cell basis. The disease-suppressing CD4+CD45RC−CD25− population expressed PD-1 but not Foxp3, which was confined to CD4+CD25+ cells. We conclude that CD4+CD25+ cells in the BBDR rat act in vitro and in vivo as natural Tregs. In addition, another population that is CD4+CD45RC−CD25− also participates in the regulation of autoimmune diabetes.
CITATION STYLE
Hillebrands, J.-L., Whalen, B., Visser, J. T. J., Koning, J., Bishop, K. D., Leif, J., … Rossini, A. A. (2006). A Regulatory CD4+ T Cell Subset in the BB Rat Model of Autoimmune Diabetes Expresses Neither CD25 Nor Foxp3. The Journal of Immunology, 177(11), 7820–7832. https://doi.org/10.4049/jimmunol.177.11.7820
Mendeley helps you to discover research relevant for your work.