Electrocardiogram Abnormal Classification Based on Abnormality Signal Feature

  • Purnama S
  • Afandi M
N/ACitations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Heart rate abnormalities can lead to many cardiovascular diseases such as heart arrythmia, heart failure, heart valve disease and many more. Some cardiovascular disease can cause death. Abnormalities signal feature can be seen using electrocardiogram. Electrocardiogram is an electric signal record from heart activity. Normal heart and abnormal heart have a different electrocardiogram signal pattern. This research is aim to detect abnormality from heart rate using electrocardiogram abnormality signal feature. Abnormality signal pattern can be used to classify normal and abnormal heart rate. Abnormality feature consists of P signal condition, R signal condition, P R interval rate, and double R interval. Electrocardiogram data that used in this study is obtain from MIT-BIH Arrythmia database. 20 electrocardiogram data have been used to see detection and classification performance while classifying normal and abnormal heart rate. Research result shows that feature based has 90.00% in accuracy, 90.00%in precision, and 90.00% in sensitivity while classify normal and abnormal heart rate. Research result can conclude that abnormality feature can be used to classify normal and abnormal heart rate. This method can be used for embedded system device that has limitation in memory and size.

Cite

CITATION STYLE

APA

Purnama, S. I., & Afandi, M. A. (2021). Electrocardiogram Abnormal Classification Based on Abnormality Signal Feature. JURNAL NASIONAL TEKNIK ELEKTRO, 10(3). https://doi.org/10.25077/jnte.v10n3.829.2021

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free