Primary ciliary dyskinesia is a genetically heterogeneous disorder of motile cilia. Most of the disease-causing mutations identified to date involve the heavy (dynein axonemal heavy chain 5) or intermediate (dynein axonemal intermediate chain 1) chain dynein genes in ciliary outer dynein arms, although a few mutations have been noted in other genes. Clinical molecular genetic testing for primary ciliary dyskinesia is available for the most common mutations. The respiratory manifestations of primary ciliary dyskinesia (chronic bronchitis leading to bronchiectasis, chronic rhino-sinusitis, and chronic otitis media) reflect impaired mucociliary clearance owing to defective axonemal structure. Ciliary ultrastructural analysis in most patients (>80%) reveals defective dynein arms, although defects in other axonemal components have also been observed. Approximately 50% of patients with primary ciliary dyskinesia have laterality defects (including situs inversus totalis and, less commonly, heterotaxy, and congenital heart disease), reflecting dysfunction of embryological nodal cilia. Male infertility is common and reflects defects in sperm tail axonemes. Most patients with primary ciliary dyskinesia have a history of neonatal respiratory distress, suggesting that motile cilia play a role in fluid clearance during the transition from a fetal to neonatal lung. Ciliopathies involving sensory cilia, including autosomal dominant or recessive polycystic kidney disease, Bardet-Biedl syndrome, and Alstrom syndrome, may have chronic respiratory symptoms and even bronchiectasis suggesting clinical overlap with primary ciliary dyskinesia. © 2009 Lippincott Williams & Wilkins.
CITATION STYLE
Leigh, M. W., Pittman, J. E., Carson, J. L., Ferkol, T. W., Dell, S. D., Davis, S. D., … Zariwala, M. A. (2009, July). Clinical and genetic aspects of primary ciliary dyskinesia/kartagener syndrome. Genetics in Medicine. https://doi.org/10.1097/GIM.0b013e3181a53562
Mendeley helps you to discover research relevant for your work.