miR-17-5p promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway

159Citations
Citations of this article
63Readers
Mendeley users who have this article in their library.

Abstract

miR-17-5p is overexpressed in hepatocellular carcinoma (HCC), but the specific regulatory mechanisms of miR-17-5p in HCC remain unknown. We investigated the molecular basis of miR-17-5p as an oncogene in human HCC cell lines. Our in vivo and in vitro data indicate that miR-17-5p up-regulates the migration and proliferation of HCC cells. Interestingly, proteomic and western blotting assays revealed that miR-17-5p significantly activates the p38 mitogen-activated protein kinase MAPK pathway and increases the phosphorylation of heat shock protein 27 (HSP27). Our results also suggest that E2F1-dependent down-regulation of Wip1 regulates miR-17-5p-p38-HSP27 signaling. Furthermore, suppression of HSP27 expression by small interfering RNA or the p38 MAPK pathway-specific inhibitor SB203580 decreases the migration of HCC cells overexpressing miR-17-5p but does not reduce their proliferation. Finally, we show that miR-17-5p expression correlates well with HSP27 status in primary human HCC tissues with metastasis. Conclusion: Our findings suggest that the p38 MAPK pathway plays a crucial role in miR-17-5p-induced phosphorylation of HSP27 and, as a consequence, phosphorylated HSP27 enhances the migration of HCC cells. Our data highlight an important role of miR-17-5p in the proliferation and migration of HCC cells and support the potential application of miR-17-5p in HCC therapy. Copyright © 2010 by the American Association for the Study of Liver Diseases.

Cite

CITATION STYLE

APA

Yang, F., Yin, Y., Wang, F., Wang, Y., Zhang, L., Tang, Y., & Sun, S. (2010). miR-17-5p promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway. Hepatology, 51(5), 1614–1623. https://doi.org/10.1002/hep.23566

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free