Knowledge graphs (KGs) often suffer from sparseness and incompleteness. Knowledge graph reasoning provides a feasible way to address such problems. Recent studies on knowledge graph reasoning have shown that reinforcement learning (RL) based methods can provide state-of-the-art performance. However, existing RL-based methods require numerous trials for path-finding and rely heavily on meticulous reward engineering to fit specific dataset, which is inefficient and laborious to apply to fast-evolving KGs. In this paper, we present DIVINE, a novel plug-and-play framework based on generative adversarial imitation learning for enhancing existing RL-based methods. DIVINE guides the path-finding process, and learns reasoning policies and reward functions self-adaptively through imitating the demonstrations automatically sampled from KGs. Experimental results on two benchmark datasets show that our framework improves the performance of existing RL-based methods without extra reward engineering.
CITATION STYLE
Li, R., & Cheng, X. (2019). Divine: A generative adversarial imitation learning framework for knowledge graph reasoning. In EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference (pp. 2642–2651). Association for Computational Linguistics. https://doi.org/10.18653/v1/d19-1266
Mendeley helps you to discover research relevant for your work.