Simultaneous quantification of mitochondrial dna damage and copy number in circulating blood: A sensitive approach to systemic oxidative stress

18Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

Abstract

Systemic oxidative stress is associated with a wide range of pathological conditions. Oxidative DNA damage is frequently measured in circulating lymphocytes. Mitochondrial DNA (mtDNA) is known to be more sensitive to oxidative damage than nuclear DNA but is rarely used for direct measurement of DNA damage in clinical studies. Based on the supercoiling-sensitive real-time PCR method, we propose a new approach for the noninvasive monitoring of systemic oxidative stress by quantifying the mtDNA structural damage and copy number change in isolated lymphocytes in a single test. We show that lymphocytes have significantly less mtDNA content and relatively lower baseline levels of damage than cancer cell lines. In an ex vivo challenge experiment, we demonstrate, for the first time, that exogenous H2O2 induces a significant increase in mtDNA damage in lymphocytes from healthy individuals, but no repair activity is observed after 1 h recovery. We further demonstrate that whole blood may serve as a convenient alternative to the isolated lymphocytes in mtDNA analysis. Thus, the blood analysis with the multiple mtDNA end-points proposed in the current study may provide a simple and sensitive test to interrogate the nature and extent of systemic oxidative stress for a broad spectrum of clinical investigations. © 2013 Sam W. Chan et al.

Cite

CITATION STYLE

APA

Chan, S. W., Chevalier, S., Aprikian, A., & Chen, J. Z. (2013). Simultaneous quantification of mitochondrial dna damage and copy number in circulating blood: A sensitive approach to systemic oxidative stress. BioMed Research International, 2013. https://doi.org/10.1155/2013/157547

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free