Stress granules (SGs) are cytoplasmic structures found in eukaryotic cells, from yeast to human cells. They are made up of proteins, RNA and small ribosome subunits (40S). They arise as a result of the rapid shutdown of active protein biosynthesis in the cell, which is the result of the appearance of a stress factor. The mechanism of regulation of protein biosynthesis in response to stress takes place at two control nodes: (1) phosphorylation of the α subunit of the eIF2 factor as a result of the action of stress-recognizing kinases or by modulation of the mTOR pathway activity, which regulates the initiation of protein biosynthesis by the formation of a complex within the so-called cap structure. The protein arrest causes aggregation of the translation process components and other cell components (other proteins or mRNA molecules) into SGs. A lot of data indicates the active participation of SGs in metabolic processes, their control role over pro- and anti-apoptotic processes as well as in the development of cancer, neurodegenerative diseases and their defensive role in viral infections. Running title: Stress granules in the cell
CITATION STYLE
Pietras, P., Leśniczak, M., Sowiński, M., & Szaflarski, W. (2021). Molecular structure of stress granules and their role in the eukaryotic cell. Medical Journal of Cell Biology, 9(1), 33–41. https://doi.org/10.2478/acb-2021-0006
Mendeley helps you to discover research relevant for your work.