EEG Signal Feature Extraction and Classification for Epilepsy Detection

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Epilepsy is a neurological disorder of the central nervous system, characterized by sudden seizures caused by abnormal electrical discharges in the brain. Electroencephalogram (EEG) is the most common technique used for Epilepsy diagnosis. Generally, it is done by the manual inspection of the EEG recordings of active seizure periods (ictal). Several techniques have been proposed throughout the years to automate this process. In this study, we have developed three different approaches to extract features from the filtered EEG signals. The first approach was to extract eight statistical features directly from the time-domain signal. In the second approach, we have used only the frequency domain information by applying the Discrete Cosine Transform (DCT) to the EEG signals then extracting two statistical features from the lower coefficients. In the last approach, we have used a tool that combines both time and frequency domain information, which is the Discrete Wavelet Transform (DWT). Six different wavelet families have been tested with their different orders resulting in 37 wavelets. The first three decomposition levels were tested with every wavelet. Instead of feeding the coefficients directly to the classifier, we summarized them in 16 statistical features. The extracted features are then fed to three different classifiers k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Artificial Neural Network (ANN) to perform two binary classification scenarios: healthy versus epileptic (mainly from interictal activity), and seizure-free versus ictal. We have used a benchmark database, the Bonn database, which consists of five different sets. In the first scenario, we have taken six different combinations of the available data. While in the second scenario, we have taken five combinations. For Epilepsy detection (healthy vs epileptic), the first approach performed badly. Using the DCT improved the results, but the best accuracies were obtained with the DWT-based approach. For seizure detection, the three methods performed quite well. However, the third method had the best performance and was better than many state-of-the-art methods in terms of accuracy. After carrying out the experiments on the whole EEG signal, we separated the five rhythms and applied the DWT on them with the Daubechies7 (db7) wavelet for feature extraction. We have observed that close accuracies to those recorded before can be achieved with only the Delta rhythm in the first scenario (Epilepsy detection) and the Beta rhythm in the second scenario (seizure detection).

Cite

CITATION STYLE

APA

Dalila, C., Noussaiba, F., Ferial, O., Larbi, B., & Amine, N. A. (2022). EEG Signal Feature Extraction and Classification for Epilepsy Detection. Informatica (Slovenia), 46(4), 493–506. https://doi.org/10.31449/inf.v46i4.3768

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free