The basic region-leucine zipper transcription factor c-Jun regulates gene expression and cell function. It participates in the formation of homo- or heterodimeric complexes that specifically bind to DNA sequences called activating protein 1 (AP-1) sites. The stability and activity of c-Jun is regulated by phosphorylation within the N-terminal activation domain. Mitogen- and stress-activated c-Jun N-terminal kinases (JNKs) were previously the only described enzymes phosphorylating c-Jun at the N terminus in vivo. In this report we demonstrate a JNK-independent activation of c-Jun in vivo directed by the constitutive photomorphogenesis (COP9) signalosome. The overexpression of signalosome subunit 2 (Sgn2), a subunit of the COP9 signalosome, leads to de novo assembly of the complex with a partial incorporation of the overexpressed subunit. The de novo formation of COP9 signalosome parallels an increase of c-Jun protein resulting in elevated AP-1 transcriptional activity. The c-Jun activation caused by Sgn2 overexpression is independent of JNK and mitogen-activated protein kinase kinase 4. The data demonstrate the existence of a novel COP9 signalosome-directed c-Jun activation pathway.
CITATION STYLE
Naumann, M., Bech-Otschir, D., Huang, X., Ferrell, K., & Dubiel, W. (1999). COP9 signalosome-directed c-Jun activation/stabilization is independent of JNK. Journal of Biological Chemistry, 274(50), 35297–35300. https://doi.org/10.1074/jbc.274.50.35297
Mendeley helps you to discover research relevant for your work.