Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination

221Citations
Citations of this article
195Readers
Mendeley users who have this article in their library.

Abstract

Soft, conformable electrical contacts provide efficient, noninvasive probes for the transport properties of chemically and mechanically fragile, ultrathin organic semiconducting films. When combined with high-resolution printing and lamination techniques, these soft contacts also form the basis of a powerful technique for fabricating flexible plastic circuits. In this approach, a thin elastomeric film on a plastic substrate supports the electrodes and interconnections; laminating this substrate against another plastic substrate that supports the gate, dielectric and semiconductor levels establishes effective electrical contacts and completes the circuits. In addition to eliminating many of the problems associated with traditional layer-by-layer fabrication strategies, this lamination scheme possesses other attractive features: the transistors and circuit elements are naturally and efficiently encapsulated, and the active organic semiconductor layer is placed near the neutral mechanical plane. We demonstrate the features of soft, laminated contacts by fabricating large arrays of high-performance thin film transistors on plastic substrates by using a wide variety of organic semiconductors.

Cite

CITATION STYLE

APA

Loo, Y. L., Someya, T., Baldwin, K. W., Bao, Z., Ho, P., Dodabalapur, A., … Rogers, J. A. (2002). Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10252–10256. https://doi.org/10.1073/pnas.162128299

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free