IGF binding protein-2 (IGFBP-2) has been implicated in the development and spread of a number of tumor types, and its abrogation in experimental models of cancer is associated with decreased tumor growth. This suggests that targeted inhibition of IGFBP-2 expression in some cancers may have therapeutic benefit. In this study, we investigated signaling pathways involved in extracellular IGFBP-2 expression in an IGF- and estrogen-responsive breast cancer cell line, MCF-7. IGFBP-2 was present at approximately 150 ng per 106 cells in serum-free MCF-7-conditioned medium and constituted the predominant IGFBP. Inhibition of the phosphatidylinositol 3-kinase signaling pathway using LY294002, or the downstream signaling intermediate mammalian target of rapamycin using rapamycin, markedly reduced IGFBP-2 in conditioned medium to approximately 25% of untreated levels (P < 0.001); there was no effect of inhibition of p38 MAPK, and an inhibitor of p44/42 MAPK activation, PD98059, caused only a slight reduction in extracellular IGFBP-2. IGFBP-2 levels were increased 25-30% by estradiol, whereas IGF-I (100 ng/ml) increased IGFBP-2 levels 2-fold (P < 0.001) by a type 1 IGF receptor (IGFR1)-dependent mechanism. Estradiol enhanced the effect of IGF-I on IGFBP-2 levels, and this was associated with increased phosphorylation of IGFR1. Basal, IGF-, or estradiol-stimulated IGFBP-2 was abrogated by LY294002 and rapamycin and an inhibitor of IGFR1 tyrosine kinase activity, AG1024. Modulation of intracellular hypoxia-inducible factor-1α had no effect on IGFBP-2 expression. These findings indicate that IGFBP-2 is regulated predominantly through the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway, the target of a number of anticancer agents currently in clinical trial and use. Copyright © 2007 by The Endocrine Society.
CITATION STYLE
Martin, J. L., & Baxter, R. C. (2007). Expression of insulin-like growth factor binding protein-2 by MCF-7 breast cancer cells is regulated through the phosphatidylinositol 3-kinase/AKT/ mammalian target of rapamycin pathway. Endocrinology, 148(5), 2532–2541. https://doi.org/10.1210/en.2006-1335
Mendeley helps you to discover research relevant for your work.