The Global Navigation Satellite System (GNSS)-based Bistatic Synthetic Aperture Radar (SAR) is getting more and more attention in remote sensing for its all-weather and real-time global observation capability. Its low range resolution results from the narrow signal bandwidth limits in its development. The configuration difference caused by the illumination angle and movement direction of the different satellites makes it possible to improve resolution by multi-satellite fusion. However, this also introduces new problems with the resolution-enhancing efficiency and increased computation brought about by the fusion. In this paper, we aim at effectively improving the resolution of the multi-satellite fusion system. To this purpose, firstly, the Point Spread Function (PSF) of the multi-satellite fusion system is analyzed, and focusing on the relationship between the fusion resolution and the geometric configuration and the number of satellites. Numerical simulation results show that, compared with multi-satellite fusion, dual-satellite fusion is a combination with higher resolution enhancement efficiency. Secondly, a method for dual-satellite fusion imaging based on optimized satellite selection is proposed. With the greedy algorithm, the selection is divided into two steps: in the first step, according to geometry configuration, the single-satellite with the optimal 2-D resolution is selected as the reference satellite; in the second step, the angles between the azimuthal vector of the reference satellite and the azimuthal vector of the other satellites were calculated by the traversal method, the satellite corresponding to the intersection angle which is closest to 90° is selected as the auxiliary satellite. The fused image was obtained by non-coherent addition of the images generated by the reference satellite and the auxiliary satellite, respectively. Finally, the GPS L1 real orbit multi-target simulation and experimental validation were conducted, respectively. The simulation results show that the 2-D resolution of the images produced by our proposed method is globally optimal 15 times and suboptimal 8 times out of 24 data sets. The experimental results show that the 2-D resolution of our proposed method is optimal in the scene, and the area of the resolution unit is reduced by 70.1% compared to the single-satellite’s images. In the experiment, there are three navigation satellites for imaging, the time taken to the proposed method was 66.6% that of the traversal method. Simulations and experiments fully demonstrate the feasibility of the method.
CITATION STYLE
Wu, S., Yang, D., Zhu, Y., & Wang, F. (2020). Improved gnss-based bistatic sar using multi-satellites fusion: Analysis and experimental demonstration. Sensors (Switzerland), 20(24), 1–21. https://doi.org/10.3390/s20247119
Mendeley helps you to discover research relevant for your work.