Long Noncoding RNA RP11-115N4.1 Promotes Inflammatory Responses by Interacting With HNRNPH3 and Enhancing the Transcription of HSP70 in Unexplained Recurrent Spontaneous Abortion

6Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background: Unexplained recurrent spontaneous abortion (URSA) is a common pregnancy complication and the etiology is unknown. URSA-associated lncRNAs are expected to be potential biomarkers for diagnosis, and might be related to the disease pathogenesis. Objective: To investigate differential lncRNAs in peripheral blood of non-pregnant URSA patients and matched healthy control women and to explore the possible mechanism of differential lncRNAs leading to URSA. Methods: We profiled lncRNAs expression in peripheral blood from 5 non-pregnant URSA patients and 5 matched healthy control women by lncRNA microarray analysis. Functions of URSA-associated lncRNAs were further investigated in vitro. Results: RP11-115N4.1 was identified as the most differentially expressed lncRNA which was highly upregulated in peripheral blood of non-pregnant URSA patients (P = 3.63E-07, Fold change = 2.96), and this dysregulation was further validated in approximately 26.67% additional patients (4/15). RP11-115N4.1 expression was detected in both lymphocytes and monocytes of human peripheral blood, and in vitro overexpression of RP11-115N4.1 decreased cell proliferation in K562 cells significantly. Furthermore, heat-shock HSP70 genes (HSPA1A and HSPA1B) were found to be significantly upregulated upon RP11-115N4.1 overexpression by transcriptome analysis (HSPA1A (P = 4.39E-08, Fold change = 4.17), HSPA1B (P = 2.26E-06, Fold change = 2.99)). RNA pull down and RNA immunoprecipitation assay (RIP) analysis demonstrated that RP11-115N4.1 bound to HNRNPH3 protein directly, which in turn activate heat-shock proteins (HSP70) analyzed by protein-protein interaction and HNRNPH3 knockdown assays. Most importantly, the high expression of HSP70 was also verified in the serum of URSA patients and the supernatant of K562 cells with RP11-115N4.1 activation, and HSP70 in supernatant can exacerbate inflammatory responses in monocytes by inducing IL-6, IL-1β, and TNF-α and inhibit the migration of trophoblast cells, which might associate with URSA. Conclusion: Our results demonstrated that the activation of RP11-115N4.1 can significantly increase the protein level of HSP70 via binding to HNRNPH3, which may modulate the immune responses and related to URSA. Moreover, RP11-115N4.1 may be a novel etiological biomarker and a new therapeutic target for URSA.

Cite

CITATION STYLE

APA

Liu, M., Sun, X., Zhu, L., Zhu, M., Deng, K., Nie, X., … Chen, H. (2021). Long Noncoding RNA RP11-115N4.1 Promotes Inflammatory Responses by Interacting With HNRNPH3 and Enhancing the Transcription of HSP70 in Unexplained Recurrent Spontaneous Abortion. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.717785

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free