Objective: Intra-interventional respiratory motion estimation is becoming a vital component in modern radiation therapy delivery or high intensity focused ultrasound systems. The treatment quality could tremendously benefit from more accurate dose delivery using real-time motion tracking based on magnetic-resonance (MR) or ultrasound (US) imaging techniques. However, current practice often relies on indirect measurements of external breathing indicators, which has an inherently limited accuracy. In this work, we present a new approach that is applicable to challenging real-time capable imaging modalities like MR-Linac scanners and 3D-US by employing contrast-invariant feature descriptors. Methods: We combine GPU-accelerated image-based realtime tracking of sparsely distributed feature points and a dense patient-specific motion-model for regularisation and sparse-to-dense interpolation within a unified optimization framework. Results: We achieve highly accurate motion predictions with landmark errors of 1 mm for MRI (and 2 mm for US) and substantial improvements over classical template tracking strategies. Conclusion: Our technique can model physiological respiratory motion more realistically and deals particularly well with the sliding of lungs against the rib cage. Significance: Our model-based sparse-to-dense image registration approach allows for accurate and realtime respiratory motion tracking in image-guided interventions.
CITATION STYLE
Ha, I. Y., Wilms, M., Handels, H., & Heinrich, M. P. (2019). Model-based sparse-to-dense image registration for realtime respiratory motion estimation in image-guided interventions. IEEE Transactions on Biomedical Engineering, 66(2), 302–310. https://doi.org/10.1109/TBME.2018.2837387
Mendeley helps you to discover research relevant for your work.