Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method

41Citations
Citations of this article
122Readers
Mendeley users who have this article in their library.

Abstract

Membrane technology is an essential tool for water treatment and biomedical applications. Despite their extensive use in these fields, polymeric-based membranes still face several challenges, including instability, low mechanical strength, and propensity to fouling. The latter point has attracted the attention of numerous teams worldwide developing antifouling materials for membranes and interfaces. A convenient method to prepare antifouling membranes is via physical blending (or simply blending), which is a one-step method that consists of mixing the main matrix polymer and the antifouling material prior to casting and film formation by a phase inversion process. This review focuses on the recent development (past 10 years) of antifouling membranes via this method and uses different phase-inversion processes including liquid-induced phase separation, vapor induced phase separation, and thermally induced phase separation. Antifouling materials used in these recent studies including polymers, metals, ceramics, and carbon-based and porous nanomaterials are also surveyed. Furthermore, the assessment of antifouling properties and performances are extensively summarized. Finally, we conclude this review with a list of technical and scientific challenges that still need to be overcome to improve the functional properties and widen the range of applications of antifouling membranes prepared by blending modification.

Cite

CITATION STYLE

APA

Geleta, T. A., Maggay, I. V., Chang, Y., & Venault, A. (2023, January 1). Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. Membranes. MDPI. https://doi.org/10.3390/membranes13010058

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free