High-performance cellulosic filament fibers prepared via dry-jet wet spinning from ionic liquids

30Citations
Citations of this article
63Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We report on a new process for the spinning of high-performance cellulosic fibers. For the first time, cellulose has been dissolved in the ionic liquid (IL) 1-ethyl-3-methylimidazolium octanoate ([C2C1im][Oc]) via a thin film evaporator in a continuous process. Compared to other ILs, [C2C1im][Oc] shows no signs of hydrolysis with water. For dope preparation the degree of polymerization of the pulp was adjusted by electron beam irradiation and determined by viscosimetry. In addition, the quality of the pulp was evaluated by means of alkali resistance. Endless filament fibers have been spun using dry-jet wet spinning and an extruder instead of a spinning pump, which significantly increases productivity. By this approach, more than 1000 m of continuous multifilament fibers have been spun. The novel approach allows for preparing cellulose fibers with high Young's modulus (33 GPa) and unprecedented high tensile strengths up to 45 cN/tex. The high performance of the obtained fibers provides a promising outlook for their application as replacement material for rayon-based tire cord fibers.

Cite

CITATION STYLE

APA

Vocht, M. P., Beyer, R., Thomasic, P., Müller, A., Ota, A., Hermanutz, F., & Buchmeiser, M. R. (2021). High-performance cellulosic filament fibers prepared via dry-jet wet spinning from ionic liquids. Cellulose, 28(5), 3055–3067. https://doi.org/10.1007/s10570-021-03697-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free