Identification of a critical motif responsible for gating of Kir2.3 channel by intracellular protons

44Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Protons are involved in gating Kir2.3. To identify the molecular motif in the Kir2.3 channel protein that is responsible for this process, experiments were performed using wild-type and mutated Kir2.3 and Kir2.1. CO2 and low pH(i) strongly inhibited wild-type Kir2.3 but not Kir2.1 in whole cell voltage clamp and excised inside-out patches. This CO2/pH sensitivity was completely eliminated in a mutant Kir2.3 in which the N terminus was substituted with that in Kir2.1, whereas a similar replacement of its C terminus had no effect. Site-specific mutations of all titratable residues in the N terminus, however, did not change the CO2/pH sensitivity. Using several chimeras generated systematically in the N terminus, a 10- residue motif near the M1 region was identified in which only three amino acids are different between Kir2.3 and Kir2.1. Mutations of these residues, especially Thr53, dramatically reduced the pH sensitivity of Kir2.3. Introducing these residues or even a single threonine to the corresponding positions of Kir2.1 made the mutant channel pH-sensitive. Thus, a critical motif responsible for gating Kir2.3 by protons was identified in the N terminus, which contained about 10 residues centered by Thr53.

Cite

CITATION STYLE

APA

Qu, Z., Zhu, G., Yang, Z., Cui, N., Li, Y., Chanchevalap, S., … Jiang, C. (1999). Identification of a critical motif responsible for gating of Kir2.3 channel by intracellular protons. Journal of Biological Chemistry, 274(20), 13783–13789. https://doi.org/10.1074/jbc.274.20.13783

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free