We investigated the characteristics of surface wind speeds and temperatures predicted by the local data assimilation and prediction system (LDAPS) operated by the Korean Meteorological Administration. First, we classified automated weather stations (AWSs) into four categories (urban flat (Uf), rural flat (Rf), rural mountainous (Rm), and rural coastal (Rc) terrains) based on the surrounding land cover and topography, and selected 25 AWSs representing each category. Then we calculated the mean bias error of wind speed (WE) and temperature (TE) using AWS observations and LDAPS predictions for the 25 AWSs in each category for a period of 1 year (January–December 2015). We found that LDAPS overestimated wind speed (average WE = 1.26 m s−1) and underestimated temperature (average TE = −0.63◦C) at Uf AWSs located on flat terrain in urban areas because it failed to reflect the drag and local heating caused by buildings. At Rf, located on flat terrain in rural areas, LDAPS showed the best performance in predicting surface wind speed and temperature (average WE = 0.42 m s−1, average TE = 0.12◦C). In mountainous rural terrain (Rm), WE and TE were strongly correlated with differences between LDAPS and actual altitude. LDAPS underestimated (overestimated) wind speed (temperature) for LDAPS altitudes that were lower than actual altitude, and vice versa. In rural coastal terrain (Rc), LDAPS temperature predictions depended on whether the grid was on land or sea, whereas wind speed did not depend on grid location. LDAPS underestimated temperature at grid points on the sea, with smaller TE obtained for grid points on sea than on land.
CITATION STYLE
Kim, D. J., Kang, G., Kim, D. Y., & Kim, J. J. (2020). Characteristics of LDAPS-predicted surface wind speed and temperature at automated weather stations with different surrounding land cover and topography in korea. Atmosphere, 11(11), 1–16. https://doi.org/10.3390/atmos11111224
Mendeley helps you to discover research relevant for your work.