An Ultra-Long-Lived Triplet Excited State in Water at Room Temperature: Insights on the Molecular Design of Tridecafullerenes

6Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Suitably engineered molecular systems exhibiting triplet excited states with very long lifetimes are important for high-end applications in nonlinear optics, photocatalysis, or biomedicine. We report the finding of an ultra-long-lived triplet state with a mean lifetime of 93 ms in an aqueous phase at room temperature, measured for a globular tridecafullerene with a highly compact glycodendrimeric structure. A series of three tridecafullerenes bearing different glycodendrons and spacers to the C60 units have been synthesized and characterized. UV/Vis spectra and DLS experiments confirm their aggregation in water. Steady-state and time-resolved fluorescence experiments suggest a different degree of inner solvation of the multifullerenes depending on their molecular design. Efficient quenching of the triplet states by O2 but not by waterborne azide anions has been observed. Molecular modelling reveals dissimilar access of the aqueous phase to the internal structure of the tridecafullerenes, differently shielded by the glycodendrimeric shell.

Cite

CITATION STYLE

APA

Ramos-Soriano, J., Pérez-Sánchez, A., Ramírez-Barroso, S., Illescas, B. M., Azmani, K., Rodríguez-Fortea, A., … Martín, N. (2021). An Ultra-Long-Lived Triplet Excited State in Water at Room Temperature: Insights on the Molecular Design of Tridecafullerenes. Angewandte Chemie - International Edition, 60(29), 16109–16118. https://doi.org/10.1002/anie.202104223

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free