Tryptophan is an essential amino acid important as a protein building block, but it also serves as substrate for the generation of several bioactive compounds with important physiological roles. Furthermore, tryptophan has been reported to have a unique role as a nutritional signaling molecule that regulates protein synthesis in mouse and rat liver. In the present study, the acute effects of tryptophan on protein synthesis were confirmed and compared with those of leucine in rats. Eighteen hours fasted rats were orally administered of tryptophan or leucine at a dose of 135 mg/100 g body weight by gavage and then sacrificed 1 h after administration. The effects of tryptophan and leucine on the rate of protein synthesis were evaluated by the surface sensing of translation (SUnSET) method. We also examined the ability of tryptophan to induce activation of the mTOR pathway by measuring phosphorylation of 4E-BP1 and S6K1. Oral administration of tryptophan led to a stimulation of the rate of protein synthesis concomitant with activation of mTOR pathway in the liver, but not in skeletal muscle. We also investigated the sensitivity of liver protein synthesis to tryptophan administration. The half-maximal effective doses (ED50) of tryptophan in stimulating 4E-BP1 and S6K1 phosphorylation were both about 60% of daily intake. The effect of tryptophan on hepatic protein synthesis was similar to that of leucine on muscle protein synthesis, and the sensitivity of liver protein synthesis to tryptophan administration appeared to be almost the same or slightly lower than that of muscle protein synthesis to leucine administration.
CITATION STYLE
Obeng, K. A., Mochizuki, S., Koike, S., Toyoshima, Y., Sato, Y., & Yoshizawa, F. (2022). Analysis of the Stimulative Effect of Tryptophan on Hepatic Protein Synthesis in Rats. Journal of Nutritional Science and Vitaminology, 68(4), 312–319. https://doi.org/10.3177/jnsv.68.312
Mendeley helps you to discover research relevant for your work.