Engineered Hybrid Dimers: Tracking the Activation Pathway of Caspase-7

Citations of this article
Mendeley users who have this article in their library.


Caspase-7 is an obligate dimer of catalytic domains, with generation of activity requiring limited proteolysis within a region that separates the large and small chains of each domain. Using hybrid dimers we distinguish the relative contribution of each domain to catalysis by the whole molecule. We demonstrate that the zymogen arises from direct dimerization and not domain swapping. In contrast to previous conclusions, we show that only one of the catalytic domains must be proteolyzed to enable activation. The processed domain of this singly cleaved zymogen has the same catalytic activity as a domain of fully active caspase-7. A transient intermediate of singly cleaved dimeric caspase-7 can be found in a cell-free model of apoptosis induction. However, we see no evidence for an analogous intermediate of the related executioner caspase-3. Our study demonstrates the efficiency by which the executioner caspases are activated in vivo. © 2006 Elsevier Inc. All rights reserved.

Author supplied keywords




Denault, J. B., Békés, M., Scott, F. L., Sexton, K. M. B., Bogyo, M., & Salvesen, G. S. S. (2006). Engineered Hybrid Dimers: Tracking the Activation Pathway of Caspase-7. Molecular Cell, 23(4), 523–533.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free