The Pyrococcus abyssi genome displays two genes possibly coding for S-adenosyl-l-methionine-dependent RNA(uracil, C5)-methyltransferases (PAB0719 and PAB0760). Their amino acid sequences are more closely related to Escherichia coli RumA catalysing the formation of 5-methyluridine (m5U)-1939 in 23S rRNA than to E. coli TrmA (tRNA methyltransferase A) methylating uridine-54 in tRNA. Comparative genomic and phylogenetic analyses show that homologues of PAB0719 and PAB0760 occur only in a few Archaea, these genes having been acquired via a single horizontal gene transfer from a bacterial donor to the common ancestor of Thermococcales and Nanoarchaea. This transfer event was followed by a duplication event in Thermococcales leading to two closely related genes. None of the gene products of the two P. abyssi paralogues catalyses in vitro the formation of m5U in a P. abyssi rRNA fragment homologous to the bacterial RumA substrate. Instead, PAB0719 enzyme (renamed PabTrmU54) displays an identical specificity to TrmA, as it catalyses the in vitro formation of m5U-54 in tRNA. Thus, during evolution, at least one of the two P. abyssi RumA-type enzymes has changed of target specificity. This functional shift probably occurred in an ancestor of all Thermococcales. This study also provides new evidence in favour of a close relationship between Thermococcales and Nanoarchaea.
CITATION STYLE
Urbonavičius, J., Auxilien, S., Walbott, H., Trachana, K., Golinelli-Pimpaneau, B., Brochier-Armanet, C., & Grosjean, H. (2008). Acquisition of a bacterial RumA-type tRNA(uracil-54, C5)-methyltransferase by Archaea through an ancient horizontal gene transfer. Molecular Microbiology, 67(2), 323–335. https://doi.org/10.1111/j.1365-2958.2007.06047.x
Mendeley helps you to discover research relevant for your work.